C. U. SHAH UNIVERSITY Winter Examination-2019

Subject Name : Discrete Mathematics

Subject Code : 4TE04DSM1			Branch: B Tech (CE)				
Semest	er : 4	Date : 01/10/2019	Time : 02:30 To 05:30	Marks : 70			
 Instructions: (1) Use of Programmable calculator & any other electronic instrument is prohibited. (2) Instructions written on main answer book are strictly to be obeyed. (3) Draw neat diagrams and figures (if necessary) at right places. (4) Assume suitable data if needed. 							
Q-1	a)	Attempt the following questions: The negation of "some students like		(14)			
		(A) Some students dislike football	(B) Every student dislikes for	ootball			
	b)	(C) Every student likes football (If $T(x): x$ is teach, $M(x): x$ is most of the statement "All teachers are not (A) $\forall x (T(x) \rightarrow M(x))$ (B) $\forall x$	ale, then the symbolic represe nale" is	ntation			
		(C) $\forall x \left(T(x) \land M(x) \right)$ (D) $\exists x ($	$(T(x) \rightarrow M(x))$				
	c)	A binary operation on a set A is a r (A) $A \times A$ (B) A (C) set of integr					
	d)	Let G be a group and $a \in G$. If O					
	e)	(A) 17 (B) 16 (C) 8 (D) 5 A group <i>G</i> is commutative iff		²			
	f)	(A) $ab = ba$ (B) $(ab)^{-1} = b^{-1}a^{-1}$ Which of the following are posets (i) $(Z, =)$ (ii) (Z, \neq) (iii) (Z, \neq)	?) = db			
	g)	 (A) (i) and (iv) (B) (i) and (ii) (C) A self-complemented, distributive (A) Boolean algebra (B) Modular (D) Complete lattice 	lattice is called	v)			
	h)	In the lattice $\{1, 5, 25, 125\}$ with	respect to the order relation				
	i)	divisibility, the complement of 1 is (A) 1 (B) 5 (C) 25 (D) 125 If B is a Boolean Algebra, then wh (A) B is a finite but not complemented (B) B is a finite, complemented (C) B is a finite, distributive but	tich of the following is true nented lattice. and distributive lattice. not complemented lattice.	Page 1 of 3			
		Stan UNI	the l	rage I OI 3			

(D) B is not distributive lattice.

Q-2

Q-3

Q-4

Q-5

Q-6

		(D) B is not distributive lattice.	
	j)	The Boolean expression $A + AB + A\overline{B}$ is independent to:	
		(A) A (B) B (C) Both (A) and (B) (D) None of these	
	k)	Another name for directed graph is	
		(A) Direct graph (B) Diggraph (C) Dir-graph (D) Digraph	
	l)	A graph is tree if and only if	
		(A) Is planar (B) Contains a circuit (C) Is minimally	
		(D) Is completely connected	
	m)	Pigeonhole principle states that $A \rightarrow B$ and $ A > B $ then:	
		(A) f is not onto (B) f is not one-one (C) f is neither one-one nor	
		onto (D) <i>f</i> may be one-one	
	n)	Fuzzy logic is a form of	
	11)	(A) Two-valued logic (B) Crisp set logic (C) Many-valued logic	
		(D) Binary set logic	
	A	Attempt any four questions from Q-2 to Q-8	
2		Attempt all questions	(14)
	a)	Show that $\Box r$ is a valid conclusion from the premises	(5)
		$p \Rightarrow \Box q, r \Rightarrow p, q$ (a) with truth table (b) without truth table.	
	b)		(5)
		$xHx^{-1}=H; \ \forall x\in G.$	
	c)	Draw Hasse diagram for the poset $\langle S_{18}, \mathbf{D} \rangle$; where $a\mathbf{D}b$ means a divides	(4)
		<i>b</i> .	
3		Attempt all questions	(14)
	a)	State and prove Lagrange's theorem on group.	(5) (5)
	b)	Prove that $\langle \{1, 2, 3, 6\}, \text{GCD}, \text{LCM} \rangle$ is a sublattice of the lattice	(5)
		$\langle S_{30}, \text{ GCD}, \text{LCM} \rangle.$	
	c)	Find Meet-irreducible elements and antiatoms for the lattices $\langle S_{60}, \mathbf{D} \rangle$.	(4)
Ļ		Attempt all questions	(14)
	a)	Using definition of complement of an element find complement of each	(5)
		element of lattice $\langle S_{10}, \text{ GCD}, \text{LCM}, 1, 10 \rangle$	
	b)	Find all sub algebra of Boolean algebra $\langle S_{210}, *, \oplus, ', 0, 1 \rangle$.	(5)
	c)	Draw all non-isomorphic graph on 2 and 3 vertices.	(4)
5	,	Attempt all questions	(14)
	a)	State and prove Stone's representation theorem.	(5)
	b)	Draw the graph of tree represented by	(5)
		$\left(v_0 \left(v_1 \left(v_2\right) \left(v_3 \left(v_4\right) \left(v_5\right)\right)\right) \left(v_6 \left(v_7 \left(v_8\right)\right) \left(v_9\right) \left(v_{10}\right)\right)\right)$	
	c)	Show that $3+33+333+\dots+33\dots+33=(10^{n+1}-9n-10)/27$	(4)
		By mathematical induction.	
5		Attempt all questions	(14)
	a)	Find the node base of following of digraph.	(5)

- b) Show that in any room of people who have been doing handshaking (5) there will always be at least two people who have shaken hands the same number of times.
- c) Show that the following Boolean expression are equivalent. (4) (i) $(x \oplus y) * (x' \oplus y)$, y
 - (ii) $x*(y\oplus(y'*(y\oplus y'))), x$
 - (iii) $(z' \oplus x) * ((x * y) \oplus z) * (z' \oplus y), x * y$

Q-7 Attempt all questions

(14)

- a) Let $a, b, c \in L$ and $\langle L, \leq \rangle$ be a lattice. Then prove that (i) $a \leq b, a \leq c \Rightarrow a \leq b * c, a \leq b \oplus c$ (5)
 - (ii) $b \le a, c \le a \Rightarrow b * c \le a, b \oplus c \le a$

b)	Draw the graph where $V = \{1, 2, 3, 4\}$ and $E = \{e_1, e_2, e_3, e_4, e_5\}$,	(5)
	$e_1 = e_5 = (1,2)$, $e_2 = (4,3)$, $e_4 = (2,4)$ and $e_3 = (1,3)$.	

c) Prove that $(Z_6, +_6)$ is a finite abelian group of order 6. (4)

Q-8 Attempt all questions

(14)

- a) Prove necessary and sufficient condition for a non-empty subset H of a group G to be a subgroup is that a ∈ H, b ∈ H ⇒ ab⁻¹ ∈ H where b⁻¹ is the inverse of b in G.
 b) Find all the maxterms of a Boolean algebra with three variables (5) x₁, x₂, x₃.
 c) Obtain the equivalent disjunctive normal form for the formula: (4)
 - c) Obtain the equivalent disjunctive normal form for the formula: (4) $\Box \ G \land (H \Leftrightarrow G)$

